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In  the critical Reynolds-number range (Re = 3 4  x lo5) the structure of the flow 
around a circular cylinder undergoes drastic changes that are coupled with a break 
in symmetry manifested by the occurrence of a steady lift force having unpredictable 
sign. Between the stable states the time functions of lift exhibit chaotic behaviour. 
Sensitivity to small perturbations is demonstrated by experiments showing that in 
principle it is possible to trip all transition jumps in the critical range by a 
perturbation localized in space and time. The structural changes of the flow, in 
particular the symmetry breaks, are visualized by oil-flow photographs. Furthermore 
the transition jumps were recorded in the time domain, thus the characteristic time 
for the jumps was obtained. 

1. Introduction 
A typical characteristic of nonlinear systems is their sensitivity to perturbations 

in critical situations. One consequence of this sensitivity is, for example, that 
transitions between individual stable states can, near a critical point, be influenced 
or controlled by a very small perturbation which may be natural or artificial. In  this 
paper we shall demonstrate this sensitivity by experiments in which transition from 
laminar to turbulent flow is tripped by a perturbation localized in space and time. 
In  general, the experiments will demonstrate that there are situations in which 
events in the microstructure can cause changes in the macrostructure of a system. 

The common techniques for initiating transition from laminar to turbulent flow 
use large perturbations such as trip wires or strips. Consider, for example, the 
classical experiment by Prandtl(l914) which involved forced transition from laminar 
to turbulent flow around a sphere. Since this perturbation consisted of a wire around 
the sphere, the length of the extended trip wire and diameter of the sphere are of 
the same order. We shall show that transition can be initiated by a perturbation that 
is small in comparison with the spatial extent of the flow configuration and the shed 
vortices. 

We have previously reported on a symmetry-breaking instability occurring in flow 
round a circular cylinder (Schewe 1983a). Within the range of critical Reynolds 
number (Re x 3-4 x lo5) when the drag coefficient C ,  declines rapidly, we observed 
steady asymmetric flow states manifested by steady lift forces having unpredictable 
sign and jumps in the Strouhal number. The break in symmetry, i.e. the asymmetric 
flow states, can be explained by the fact that transition from laminar to turbulent 
flow in the boundary layer occurs first on one side of the cylinder and then, at a 
slightly higher Reynolds number, on the other side. The discontinuous jumps 
between individual states can be interpreted as subcritical bifurcations. 

With regard to jumps in the vortex-shedding frequency, we found experimentally 
that the ratio of Strouhal numbers belonging to different stable states is nearly 
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constant and corresponds approximately to the ‘Golden Section’ (or ‘Golden Ratio ’ 
G = 31 / (5 )+  1) = 1.6 ...; Schewe 1985~) .  

To explain the unpredictability in the sign of the lift force, we assumed (Schewe 
1983a) that the side of the cylinder where transition first occurs is determined by 
events in the microstructure of the flow. This being the case, it is therefore 
conceivable that transition can be initiated at a critical point by local perturbations 
or fluctuations inherent in the flow which occur stochastically in both space and time. 
Thus, the sign of the lift force may be dependent upon the side of the cylinder on 
which a perturbation sufficient to initiate transition first occurs. 

To test these speculations, we simulated the above-mentioned small perturbation 
with one artificial local inhomogeneity on the surface of the circular cylinder. In  
Schewe (1983b), we first reported that it is possible to trip all transitions within the 
range of critical Reynolds numbers with a small movable pin. We shall give a more 
detailed description of these experiments in the present paper, and provide additional 
information on the phenomena which take place within the range of critical Reynolds 
numbers. We took oil-flow photographs in order to visualize the individual states. 
Furthermore, by directly measuring transition jumps in the time domain, we 
collected data on the characteristic times of these transition jumps. 

2. Experimental arrangement 
Experiments were performed in the same pressurized wind tunnel in Gottingen 

and, in most cases, with the same circular cylinder described in Schewe (1983a, b). 
With the exception of the flow-visualization experiments, the flow speed lay within 
the range U ,  = 10-20 m/s, which means that the range of critical Reynolds numbers 
was reached at a pressure of p = 6 bar. In this range of critical Reynolds numbers, 
turbulence intensity was about Tu = 0.3 yo. The closed square test section of the 
wind-tunnel measures 0.6 x 0.6 m2. With a diameter of D = 0.06 m and a length of 
L = 0.6 m, the circular cylinder has an aspect ratio of L I D  = 10, and produces a 10 % 
geometric blockage of flow in the tunnel. The polished cylinder has a roughness 
of about k = 1 pm, which yields a non-dimensionalized roughness parameter of 
k / D  x In  several cases we used a more slender cylinder with a diameter of 
D = 0.034 m, which yields an aspect ratio of L I D  = 18 (geometric blockage: 5.7 yo). 
We used this more slender cylinder for the flow-visualization experiments because 
it was easier to dismantle when taking photographs. 

The flow was studied by measuring steady as well as unsteady forces acting on the 
cylinder. The balance, which operates with 3-component piezoelectric force trans- 
ducers (Kistler model 9067), has been described by Schewe (1983a, 1985b). A major 
feature of this balance is its high stiffness which results in a high natural frequency 
and low levels of interference between the individual force components. Furthermore, 
the balance is characterized by a large dynamic range, even for quasi-static 
measurements (1 5 P 5 10 kN), and a threshold of 0.01 N for measurements of 
unsteady forces. The signals were evaluated with a Nicolet 660B analyser and a 
computer equipped with an analog-digital converter system. 

3. Results 
We shall first consider the functional relationship between the drag coefficient C ,  

and the Reynolds number Re shown in figure 1. In this figure we have collected the 
classical measurements of Wieselsberger (1923), which represent the lower range of 
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FIQTJRE 1. Drag coefficient CD versus Reynolds number: ---, Wieselsberger (1923) ; ..... . , Schewe 
(1983a). The most drastic change in CD occuw in the critical range (Re x 3 x 10"). This paper 
concentrates on phenomena occurring in this regime. 

Re, and our measurements (Schewe 1983u), representing the higher range. The most 
obvious change in C,(Re) occurs in the critical Reynolds-number range 3-4x lo5, 
where C,  falls from its subcritical value of 1.2 to the supercritical value of 0.2. This 
decline of C,  (often called drag crisis) is a consequence of drastic changes in the global 
structure of the entire flow field. 

3.1. Flow visualization of structural changes 
In order to gain a visual impression of the changes in the global structure occurring 
in individual states, we took oil-flow photographs of time-averaged skin-friction 
lines. Since the oil suspension itself would increase the surface roughness of the 
cylinder, an indirect method was chosen so that the cylinder would not be affected 
by the visualization method. We therefore photographed only the skin-friction lines 
on the walls of the test section between which the cylinder was mounted. The 
topological structure of the flow near the wall is very complicated. Flow in this region 
is determined by interference effects between the so-called horseshoe vortex wrapped 
around the cylinder and the boundary layer on thewall. In  spite of these complica- 
tions, however, certain conclusions can be drawn concerning the mean flow field 
around a cylinder. Details of the flow in the vicinity of the sidewalls differ 
considerably from those in the centre of the span. Nevertheless the streamline 
pattern on the wind-tunnel walls does serve as an indication of global changes in the 
nominally two-dimensional flow around the cylinder. Figures 2 (u-e) show the 
photographs taken at different Reynolds numbers in and near the critical regime. 
The flow speed was approximately U, = 31 m/s in all four cases; the Reynolds 
number was changed by varying the pressure in the wind tunnel. Both oil-flow 
pictures and force measurements were made during the same runs. 

It is obvious from the results that, depending on the Reynolds number, there is 
a drastic change in the global structure of the individual states. The photograph in 
figure 2(u )  was taken at Re = 2 x lo6 (subcritical Re/Rec, x 0.66) where the mean 
flow is symmetric (C, = 0) and characterized by quasi-periodic vortex shedding with 
Strouhal number Sr = 0.2 and by C, = 1.1. For the result shown in figure 2 (b), the 
Reynolds number was adjusted to be as near as possible to the first critical value Rec, 
which occurs just prior to transition in the asymmetric state. Figures 2(c ,  d )  show 
the break in symmetry, i.e. they show both possible asymmetric flow states where 
C, = -1.1 (figure 2c), C,= + 1.1 (figure 2 4 ,  C, = 0.5, and Sr = 0.3. The pictures 
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FIQURE 2. Oil-flow photographs taken from the sidewalls between which the cylinder is spanned. 
The pictures provide footprints of the structural changes dependent on the Reynolds number. (a) 
Subcritical symmetric state Re = 2 x lo6; ( b )  symmetric state immediately before the first transition 
jump Rec, = 3 x lo5; (c; d )  both possible asymmetric states after the transition Rec, = 3 x lo5; (e)  
symmetric supercritical state Re = 4 x lo5. 
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FIGURE 3. Behaviour of the steady lift coefficient C, in the critical Re range. At the critical values 
Re,, and Re,, the transition jumps A and B occur for increasing Re (Re?). Owing to hysteresis the 
corresponding jumps for decreasing Re (Re$) B and A’ occur at Re’,, and Re’,,. The sign of C,  is 
unpredictable. The transition jumps are coupled with a small change E in Re due to feedback effects 
on the incoming flow. Therefore the transition jumps are not vertical ( E  = 0) ,  as would be the caae 
under ideal conditions (see also Schewe 1983a). 

in figures 2(c, d) were taken at approximately the same Reynolds number 
Rec, = 3 x lo6 after the &st transition (A) had occurred. Conclusions regarding the 
sign of the lift force can be drawn from the location of the stagnation points on the 
front of the cylinder. With respect to the centreline in figure 2(c) ,  the stagnation 
point is shifted to the upper side of the cylinder, while in figure 2 ( d )  it  is shifted to 
the lower side. These shifts result in a negative and a positive lift respectively. Under 
ideal conditions, the pictures in figures 2 (c ,  d )  would be mirror images of each other 
at  the centreline. 

Figure 2 ( e )  represents the supercritical state at Re = 4 x lo6, where the mean flow 
field is again symmetric (CL = 0) and CD = 0.2;  the Strouhal number here is 0.48. The 
fact that CD and C,, which were measured simultaneously with the flow visualization, 
differ slightly from the values given in figure 1 and in the following figure 3 is caused 
by different blockage effects in the two cases. In  the five pictures we can see 
moderately dark trace8 which are probably flow-separation lines caused by the 
horseshoe vortex formed at the junctions between the cylinder and the wind-tunnel 
walls. These lines should not be interpreted as a quantitative measure of the wake 
width, however. We should emphasize again that the purpose of showing these 
photographs is only to provide additional documentation of the break in symmetry 
as well as of the changes that occur in the global structure when the flow goes from 
the subcritical to the supercritical state. From the point of view of this paper, the 
complicated behaviour of the flow at the wall is a secondary effect. Nevertheless, 
the flow patterns on the wind-tunnel walls have provided footprints of changes in the 
global flow structures. 

3.2. Description of the phenomena 
Before proceeding to the experiments with artificial local perturbations of the flow, 
it will be useful to re-examine previously published observations (Schewe 1983a, b) 
using improved representations and adding additional results. 

Figure 3 shows the behaviour of the steady lift coefficient C, in and near the critical 
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FIGURE 4. Time functions of the lift fluctuations C,(t) for Re approaching the critical values Re,,, 
and Re,,, (see also figure 3). The scale for the amplitudes is the same for all time functions (a?). 
(a) Subcritical state with quasi-periodic vortex shedding, RelRe,,, = 0.88. (a) Loss of order as 
Re+Re,,, RejRe,, = 0.93; C, = 0. (c) State immediately prior to transition A, Re x Re,,,; C, = 0. 
(d) Reordering of the flow immediately after jump A in the asymmetric state, Re FS Re,,, = 0.94 Re,,,’ ; 
C, = +1.2. (e) Loss of order again as Re+ Recr, Re = 0.99ReCr. (f) State immediately prior to 
transition B, Re FS Re,,,; C, = f0.7. (g) Reordering of the flow immediately after jump B, the state 
is symmetric again. The small increase E has no significant influence on the characteristics of the 
time function, Re = Recr + E ;  C, = 0. 

t [SI 

regime. At  critical Reynolds numbers Rec, and Re,*, transitions A and B occur if the 
critical values have been approached with increasing Re, which hereafter will be 
denoted by Ref. A prime on the symbol identifying the transition shall denote the 
phenomena occurring with decreasing Reynolds number Re$. Because of hysteresis 
effects, the corresponding transitions A’(Re$) and B’(Re4) occur at Rehl and Re6 
respectively. We adjusted the flow for a critical Reynolds number by either 
increasing or decreasing the flow speed in very small steps. At  approximately the 
critical value, the flow speed was held constant, and we waited a few minutes until 
a natural perturbation or fluctuation provoked a transition jump. This procedure 



Flow round a circular cylinder 39 

Run 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  

Re? - - + -  + -  + -  + + - -  + -  
+ +  sign of C ,  R e $ +  + + - - - + + + -  + -  

TABLE 1. Distribution of the sign of the lift C,, when the critical regime is passed 28 times 

eliminated memory effects that could lead to a preference for one sign. A memory 
effect could involve, for example, the way in which flow speed U ,  was accelerated 
to the critical Reynolds number. Under idea1 conditions the transition jumps, 
indicated in figure 3 by arrows, would be vertical and not more or less inclined. This 
phenomenon can be explained by feedback effects in the closed-return wind tunnel : 
when the rotation speed of the fan is held constant at a critical Reynolds number, 
changes in the drag on the cylinder (which are coupled with a transition jump) can 
in turn lead to changes in the speed of the incoming flow. 

The individual stages of the flow in and near the critical range may be characterized 
by time functions of the lift fluctuations (see figure 4). It is obvious that the flow loses 
stability as the Reynolds number approaches a critical value Rec, or Rec2. This 
tendency to lose stability can be inferred from the gradual loss of regularity in the 
time functions as well as from the occurrence of aperiodic low-frequency fluctuations. 
At  Rec, and Recp, just prior to transition, the time functions exhibit chaotic 
behaviour. We should note here that, in the vicinity of Recl, the corresponding power 
spectra reported by Schewe (1983~)  show two frequencies with f,/f2 x 2.3, which 
are probably incommensurate. Specifically, no period doubling has been observed. 
Looking at figures 3 and 4 we see that after transition A has occurred, i.e. after the 
time-averaged mean value C,(t) has jumped from zero to k 1.2, we can conclude from 
the reappearance of quasi-periodicity a t  a new vortex-shedding frequency that the 
flow has reordered itself. The second jump B from C,  = k0.75 to C ,  = 0 can be 
interpreted in a similar fashion. Again, the behaviour and jumps in Strouhal number 
are described in more detail in Schewe (1983a, 1985~) .  

To get an idea of the statistics of the sign of C,, we repeated the measurements 
28 times, during which the critical regime was passed 14 times for Ref as well as for 
Re4 (table 1). Although the number of samples is rather small for a serious statistical 
study, it is still notable that the probability P for the occurrence of both signs is 
nearly equal, i.e. P( + C,) = 0.54 and P( - C,) = 0.46. 

- 

3.3. Direct measurement of the transition jumps in the time domain 
When we consider the transition phenomena, the question arises concerning the 
characteristic time At of a transition jump and the shape of CL(t) prevailing at the 
instant when the jump occurs. We therefore recorded the jumps in C, with an 
analyser in its transient mode. The procedure is similar to conditional sampling 
where the condition is provided by an internal triggering level. A trigger threshold, 
for example C,  x 0.5, was selected to be higher than the lift fluctuations at a critical 
point and lower than at the expected jump. The flow was then adjusted for a critical 
value Rec, or Re& so that a natural transition could be expected. At the instant when 
a transition caused the trigger level to be exceeded, the jump in CL(t) and its values 
immediately preceding and following transition were stored in the memory bank. 
Figure 5(a) shows a natural transition A from a symmetric subcritical state to an 
asymmetric state having negative sign. The measurement was taken at Rec, by 



40 G. Schewe 

CL 

0 1 2 

FIGURE 5. Time-dependent behaviour of the natural transition jumps C,(t)  taken at fixed critical 
values of Re. (a) Jump A (Re?) from symmetric subcritical to asymmetric state (LID = 10). ( b )  
Jump B’ (Re$) from symmetric supercritical to asymmetric state (LID = 10). ( c )  Jump B’ (Re$) 
using a more slender cylinder with LID = 18. A jump back to the state prior to the transition was 
never observed. 

bl 

approaching it with increasing Reynolds number (Ref) .  Figure 5(b) shows a corres- 
ponding measurement taken between the supercritical and the asymmetrical state, i.e. 
transition B’(ReJ.), recorded at Reh2. After a transition had occurred in all cases the 
flow persisted in the new state regardless of whether the transition was from laminar 
to turbulent (5a) or from turbulent to  laminar flow (5b) .  The characteristic time At 
was determined as demonstrated in figure 5 ( c ) ,  where a transition B’ is shown for 
the more slender circular cylinder with LID = 18. I n  figures 5 ( b ,  c ) ,  the Reynolds 
number and flow speed were approximately the same. 

For all evaluated jumps, the characteristic time was approximately At = 0.15 s .  
This characteristic time can probably be considered to be the time required for a 
transition from laminar to turbulent (or from turbulent to laminar) flow to become 
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established along the entire cylinder. With reference to Schewe (1983a), it is 
conceivable that transition begins locally and spreads along the cylinder in a manner 
similar to that in a nucleation process. Therefore, making a rough approximation for 
the rate of spreading in the transverse direction yields U, = At/L x 4 m/s with 
U,/U,  = 0.3. This value was found in both cases, i.e. for LID = 10 and 18. 

Normalizing the characteristic time At with cylinder diameter D and flow speed 
U ,  yields At U,/D = 34 for L / D  = 10 and At U, /D = 58 for L / D  = 18. These values 
can be compared with a typical time of the system, for example the vortex-shedding 
period Tin the subcritical state, which is 1/Sr = TU,/D x 5 .  For the cylinder having 
LID = 10, a typical transition thus lasts about seven shedding periods whereas, for 
the more slender cylinder, the number of shedding periods comparable to a transition 
time is about 12. Thus we can conclude that the characteristic time At does not scale 
with the vortex-shedding period T. 

3.4. Artificial tripping of transition jumps 
We were concerned in $3.3 with transition jumps where the sign of the lift force was 
determined by chance. In this section we shall demonstrate that it is possible to 
anticipate or manipulate chance by introducing a perturbation that is small 
compared with the dimensions of the cylinder. The perturbation used was a small 
movable pin of diameter d = 0.8 mm. This pin was installed into the surface of the 
circular cylinder ( D  = 0.06 m) as shown in figure 6. It was possible to extend the pin 
normal to the surface to various heights h by a remote-controlled stepping motor 
(0 5 h 5 3 mm). When in position h = 0, the pin is flush with a surface, i.e. there is 
no perturbation. The pin was positioned in the middle of the cylinder, and by turning 
it, the angular position of the pin can be varied. When the ratios of the 
characteristic sizes of the pin, the cylinder and the vortex street are considered, we 
see that the size of the perturbation due to the protruding pin (h  = 0.5-1 mm) is 
indeed quite small ( d / D  z 10+ and d / L  x On the other hand the size of the 
protruding pin and the local boundary-layer thickness are of the same order. In this 
context we should mention that there are at least two important lengthscales in the 
flow : the boundary-layer thickness on the microscopic level and the characteristic 
size of the evolving vortex pattern on the macroscopic level. Our artificial perturbation 
is small in the sense that the size of the pin is on the microscopic level while its effect 
will be on the macroscopic level. 

The experimental procedure was as follows: as described above, the flow was 
adjusted to a critical value (Rec,, Recz, Re;, or RehJ so that a transition jump could 
be expected. Then the pin was made to protrude from the surface into the flow. In 
most cases, transition occurred immediately and the pin was subsequently retracted 
to h = 0. Because of hysteresis effects, the flow persisted in the new state. 

We say ‘ in most cases I ,  because the injection of the perturbation does not always 
trip the flow : in the case of transition A ,  it  occasionally happened that transition was 
not established over the entire length of the cylinder. This conclusion can be drawn 
from the observation that, in these cases, the lift underwent a reduced jump from 
C,  = 0 to only C ,  x f0.5. In addition, the lift disappeared immediately as the pin 
was retracted. On the other hand, successive attempts to initiate transition A’(Re4) 
and B’(ReJ.) were nearly always successful. This point will be considered in the 
final discussion. 

The experiments showed that, in principle, it is possible to initiate all transitions, 
i.e. A ,  A’, B ,  B’ (see figure 3), with a perturbation localized in space and time. Once 
a new state was established over the entire length of the cylinder, a jump back - for 
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FIGURE 6. Schematic illustration of how the small perturbation works. A movable pin with diameter 
d = 0.8 mm is installed normal to the surface of the cylinder. The remote-controlled height h can 
be varied in the range 0 5 h 5 3 mm. 

example, from laminar to turbulent flow or vice versa - was never observed regardless 
of whether the transition was induced or natural. In all cases, the sign of the lift 
depended upon the angular position 4 of the pin. Perturbing the flow on the upper 
side led to positive lift (+C,) if Rec, was approached with increasing Reynolds 
number Re?, and to negative lift ( -CL) for Re;, (Re$). In the former case, transition 
A from laminar to turbulent flow in the boundary layer was initiated, while in the 
later case, transition B from turbulent to laminar flow was initiated. Therefore, with 
the perturbation located in the same angular position 4, both asymmetric states can 
be tripped, depending on the chosen critical point as well as on how this point is 
approached. A perturbation on the lower side (i.e. 4 is negative) inverts the sign. 

Figures 7 ( a ,  b )  show the jumps in lift for tripped transitions A(Ret) and B’(Re4) 
recorded by using the same procedure as described for natural transitions 
(figures 5a, b) .  A direct comparison between corresponding transitions reveals that, 
apart from sign, there is no significant difference in the shape of the jumps regardless 
of whether transition is natural or induced. The minor differences found under closer 
examination are due to the fact that, even after the jumps had occurred, the pin was 
still extended during the recorded time segments shown in figure 7. Consequently, 
C, is slightly reduced when compared with natural transitions. Furthermore, what 
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FIGURE 7. Time-dependent behaviour of transition jumps tripped by the artificial perturbation. 
Comparison with the corresponding jumps in figure 5 shows no significant differences. The arrows 
indicate the estimated start of the perturbation. After the transition jumps, the flow persisted in 
the new state. (a) Transition A (Ref) ,  h = 1 mm, angular position of the pin # = 60" (from Schewe 
1983b). ( b )  Transition B' (Re$), h = 0.5 mm, # = 60'. 
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is the correlation in time between the protrusion of the pin and the beginning of the 
jump in C ,  ? Because of the internal triggering mode used in these experiments, this 
question cannot be answered exactly. We estimate that the pin was made to protrude 
into the flow at the instant when the short averaged lift deviated slightly from 
C,  = 0. These points in time are indicated by small arrows in figures 7 (a ,  b ) .  There 
appears to be a time delay of about 0.1 s between the protrusion of the pin and the 
jump. This time delay could be interpreted as the response time needed by the system 
to react to the perturbation. Such a response time might be dependent upon a small 
deviation of the selected Reynolds number from the critical value. This interpretation 
should, however, be regarded as speculative since the time constant for the pin 
protruding from the cylinder is of the same order as the time delay. Finally, we can 
say that the time constant At of the jump itself has approximately the same value 
for natural transitions and for those tripped by the artificial perturbation. In 
addition, the height of the pin necessary for tripping the flow was h z 1 mm for 
transitions A(Ret) and B(Ret) and h = 0.5 mm for transitions A'(Re3.) and B'(Re3.). 

In order to trip the transition, we found that the angular positions q5 of the 
perturbation had to lie within the range 45-60O. What, then, is the significance of 
this range of angles ? By using measurements of the pressure distributions C,(#) and 
wall shear stress ~ , ( q 5 )  reported by Achenbach (1968) for Reynolds numbers near the 
critical value (Re = 2.6 x lo5), we find that T, as well as the deceleration of the fluid 
(-dC,/dq5) are high and reach their maximum in the above-mentioned range 
(45' 5 1$1 5 60"). It is therefore conceivable that the efficiency of the perturbation 
is correlated with high values of wall shear stress and of deceleration. Also, we believe 
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that  a perturbation introduced a t  1q51 5 45" will be damped by the accelerated flow 
in this region. For 141 2 60°, the perturbation is perhaps ineffective because irregular 
fluctuations in the critical state extend down to about 191 x 60". 

4. Discussion of results 
The transition phenomena reported in Schewe (19834 can be explained as follows : 
A one-sided transition from laminar to turbulent flow in the boundary layer causes 

the asymmetrical flow states. The process of transition from a symmetrical to  an 
asymmetrical state (and vice versa) is coupled with the generation of circulation 
around the cylinder, which then causes the appearance (or disappearance) of 
stationary lift. Transition on one side of the cylinder probably delays transition on 
the other side, thus enabling the asymmetric state to stabilize itself. Only after the 
Reynolds number has increased noticeably does the second transition take place on 
the other side of the cylinder, thereby re-establishing the symmetric flow state. A 
more fundamental explanation of this phenomenon involves the formation of 
two-dimensional separation bubbles as a consequence of the transition from laminar 
to turbulent flow. The stationary asymmetric state is then caused by a one-sided 
(Bearman 1969) separation bubble, while the symmetric supercritical state is a 
consequence of a two-sided separation bubble. I n  our opinion, however, i t  will be 
sufficient to  regard the transition itself as the primary cause of the phenomena 
described in this paper. The explanations for the phenomena will thus be simplified 
and also retain a more generally valid character. In  addition, explanation involving 
two-dimensional separation bubbles can only give a rather coarse picture of reality. 
We have taken oil-flow photographs which show that a more or less regular 
three-dimensional cellular structure is formed along the cylinder. Depending upon 
the Reynolds number, this cellular structure is subject to drastic changes. An 
example of such a photograph taken by the author can be found in a paper by 
Dallmann (1986) who also gives an interpretation of the result. 

It will be useful in the following discussion to  consider the simplified schematic 
representation in figure 8 of the behaviour of the stationary lift-force coefficient 
C,(Re) in the critical range. The corresponding diagram with the measured values 
(figure 3) is somewhat unclear because, a t  each transition, feedback effects lead to  
a small change in Reynolds number. Figure 8 shows both hysteresis-affected 
transitions which (each on its own) can be interpreted as subcritical bifurcations, as 
were discussed and substantiated in detail by Schewe (19834. The relationship 
between the individual states in figure 8 and the corresponding flow visualizations 
in figures 2 (a-e) is indicated by symbols. 

I n  connection with the analyses here, it is worth while to quote a description or 
definition of the various forms of a stability loss as formulated by Arnold (1984) : 

Before the steady states loses stability the attraction domain (in phase space) becomes very 
small and a random perturbation can always throw the system from this domain to  the 
other even before the attraction domain has completely disappeared. This form of loss of 
stability is called 'hard'. Here the system leaves its steady state with a jump to a different 
state of motion. This state can be another stable stationary state or a stable oscillation, 
or some more complex motion. 

The behaviour of the flow in the critical range appears to be well described by the 
quotation. I n  the metastable range Rekl 5 Re 5 Rec, (or Re;, 5 Re 5 Rec2), the 
attraction domain becomes steadily narrower in phase space as the Reynolds number 
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Re;, Re:, 

FIQURE 8. Simplified sketch of the behaviour of the steady lift coefficient C ,  in the critical regime 
(see also figure 3). Each transition A and B can be interpreted as subcritical bifurcations. The 
symbols correspond to the individual states visualized in figures 2(u-e): (a); 0 ( b ) ;  x ( c ) ;  0 
(4; 0 (4. 

approaches a critical value so that a chance (or, as in our case, a premeditated) 
disturbance can trigger a transition. In  the case of flow past a circular cylinder, there 
is also the fact that, at the critical points Recl(+) and Rec2($), two new stable states 
are available as options into which the system can jump. We can imagine that the 
situation in the vicinity of Recl(+) (Re& 5 Re 5 Recl, C, = 0 )  and Re;*(&) is like a 
competition which becomes more feverish as the critical value (Recl or Re&) is 
approached, and, finally, at the critical point itself, the outcome hangs in the balance. 
Both possibilities for the new state, characterized by the sign of C,, have an equal 
chance (i.e. the same probability, see table 1) of being selected. In addition, a detailed 
analysis of the spectra and time functions for Re-+ReCl shows that transition occurs 
in limited regions along the cylinder without tripping the entire system. Under these 
conditions, either something inherent to the system or a small external influence can 
deal the deciding blow and settle the outcome. In  our experiment, a deciding external 
influence was provided by the one-sided small disturbance. After the development 
favouring one side has been initiated, then the process of structural changes (in our 
case caused by transition along the cylinder) continues because of its own internal 
dynamics. The disturbance can then be removed and the flow remains in the new 
state. 

We shall close with a few comments on the statement made in 53.4 that the 
introduction of a local disturbance does not always initiate the transition process. 
We believe that, in principle, it  is beyond our experimental ability to control or even 
recognize all contingencies that may arise in an experiment designed to study 
transition from laminar to turbulent vortex shedding. Although this problem is 
practical and not fundamental, it still has the effect of introducing a degree of 
uncertainty into the transition phenomena. Because of the sensitivity to small 
perturbations we cannot expect that such experiments as ours are reproducible in 
a classical sense. In  the present experiment, uncertainty for example is manifested 
in our inability to predict the sign of the bistable state and in the arbitrarily selected 
time at which the artificial disturbance is introduced into the flow. At an operational 
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level, therefore, we can only expect to describe the artificial initiations of the 
transition process in terms of its probability of success. 

Nevertheless the experimental results described in this paper can be summarized 
with the statement that in the vicinity ofa  critical state, a very small cause can have 
a very great effect. 

The author drew benefit from many discussions with P. Bublitz, W. F. King, 
U. Dallmann and A. Lorenzen. This research was supported in part by the Deutsche 
Forschungsgemeinschaft (DFG) . 
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